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Abstract. While the response to an electric field of many disordered systems can be accounted
for by postulating that the system contains independent particles with transition rates having a
distribution of energy barriers or activation energies, in order to account for the temperature
dependence of the experimental results it is often assumed that this distribution depends on
temperature. In this paper, the question is examined of the minimum temperature dependence
of the energies of the rates for the individual particles that is required to produce such
temperature-dependent distributions for the system. This permits the clarification of the meaning
of a temperature-dependent distribution of activation energies, and also shows that standard
techniques such as the measurement of thermally stimulated depolarization currents often cannot
determine whether or not such a distribution exists.

1. Introduction

In many physical systems, especially those possessing an appreciable amount of disorder,
the experimental results for properties such as the mechanical or dielectric response and
the ionic conductivity [1, 2] cannot be attributed to a single type of process with a given
relaxation timeτ . Such a process would lead, for instance, to the electric polarizationP(t)

on the removal of a steady field or the mechanical stressG(t) on the removal of a steady
strain exhibiting a simple exponential decay with time. Instead, the response of these two
properties can often be described in the time domain by the Kohlrausch–Williams–Watts
(KWW) [3, 4] stretched exponential function, exp[−(t/τ )β ], or in the frequency domain
by the Havriliak–Negami (HN) [5] function [1+ (iωτ)α]−γ . Numerous explanations have
been advanced for this type of response, and also for the observed frequency dependence of
the ionic conductivity, such as Ngai’s [6] coupling model and Shlesinger’s [7] generalized
trigger diffusion model. One quite popular type of model attributes the experimental results
to the existence of different particles, such as molecules or ions, relaxing in parallel with a
distribution of relaxation times (DRT) that can be associated with a distributionh(Ea) of
activation energiesEa. This model has been used,inter alia, to account for the dielectric
response [8, 9] and the ionic conductivity [9–12] of different systems, and has also been
used to account for the results of nuclear magnetic resonance in ionic conductors [11],
while detailed statistical arguments have been advanced for a DRT that leads to relaxation
functions of the KWW form [13].

In order to account for the experimental results at different temperatures, it is usually
necessary to assume that the above distribution of activation energies (DAE) is a function of
the temperatureT [8–11], i.e. that it is of the formh(Ea, T ). Such a temperature-dependent
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distribution certainly seems possible physically, as we discuss in section 3, and it raises no
problems as long as one is only interested in the isothermal macroscopic properties of the
system. However, if one is interested in the properties of a particular set of particles when
the temperature changes, as for instance in experiments involving the thermally stimulated
depolarization of molecules that were polarized at a given starting temperature [14, 15], the
global DAE is not sufficient, and one needs to know how the activation energy for a given set
of molecules changes with the temperature. This question assumes, of course, that a physical
meaning can be attached to temperature-dependent activation energies, an assumption that
we make for the present and will discuss below in section 3. In this paper, we examine the
minimum changes in the activation energies of the transitions of the individual particles that
will lead to an observed distributionh(Ea, T ), and discuss the consequences of our results.
The motivation for such an approach is that one does not expect that a gradual change in
the temperature will lead to a sudden change in the environment of any given particle and
so in the activation energy that is required for it to make a transition.

In section 2 of this paper, we present the formalism for associating a global temperature-
dependent distribution of activation energies for the system with the temperature dependence
of the activation energies of the individual particles. In particular, we find that for the
double-exponential DAE together with a fixed pre-exponential factor that is often used [8–
10], it is not possible to distinguish between this DAE and a distribution of pre-exponential
factors (DPF) for the transition rates with a single activation energy. In section 3, we
first show that a temperature-dependent activation energy should really be regarded as a
temperature-dependent energy barrier, and then consider briefly the physical motivation for
such distributions. The main question that we consider in this section is whether it is possible
to obtain conclusive experimental evidence for the presence of a distribution of temperature-
dependent energy barriers. Finally, our conclusions are summarized in section 4.

2. Temperature-dependent distributions

It is instructive to start by considering the more general problem of a system in which
the energiesE, whether they be the energies of eigenstates of the system or the activation
energiesEa for transitions between states, are functions of temperature. In such systems,
the states or transitions obviously cannot be identified by their energies, and so we will
associate with each of them a parameterx, having a distributiong(x) that is independent of
temperature. This parameter is chosen to be such that for each value ofx there is a unique
associated energyE(x, T ), and we write the inverse of this relationship in the form

x = X(E, T ). (1)

Then, since the range ofx corresponding to energies betweenE and E + dE is
|∂X(E, T )/∂E| dE, one readily finds that

g(x)|∂X(E, T )/∂E| = h(E, T ). (2)

In order to show how the parameterx can have some physical significance, we consider
first a crystal in which we choose for this parameter the wavenumberk, and in which the
energy of the state associated with this wavenumber is

E(k) = h̄2k2/[2m′(T )] (3)

wherem′(T ) is a temperature-dependent effective mass. In this case, the distributiong(k)
for a crystal ind dimensions is just

g(k) = Akd−1 (4)
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whereA is a normalizing constant, and hence it follows from equation (2) that

h(E, T ) = (A/2)[2m′(T )/h̄2]d/2Ed/2−1 (5)

which corresponds to the standard result in the case of three-dimensional systems [16].
We now turn to the main subject of this paper, namely disordered systems involving

transitions over energy barriers and so having temperature-dependent distributionsh(Ea, T )

of activation energiesEa. These systems are often modelled [8–13] by a set of independent
entities (which we will call particles for convenience) each relaxing in parallel, with a
distribution of relaxation times (DRT)τ such that at temperatureT after a disturbance from
equilibrium each particle relaxes exponentially in time towards some ground state with a
relaxation time

τ = τ0 exp(Ea/kBT ) (6)

wherekB is the Boltzmann constant and in the simplest cases the pre-exponential factor
τ0 is assumed to be constant. Rather than treat a general temperature-dependent DAE, we
consider here the special case for which the normalized distribution of activation energies
h(Ea, T ) has the form

h(Ea, T ) = cH [(Ea − E0)f (T )] (7)

whereH(y) is a normalized distribution. Since both distributions are normalized,

1=
∫ ∞
−∞

h(Ea, T ) dE = [c/|f (T )|]
∫ ∞
−∞

H(y) dy = c/|f (T )| (8)

and so

c = |f (T )| . (9)

For this type of distribution, it is natural to choose as the parameter that identifies the
different particles

x = [Ea − E0]f (T ) (10)

in which case

g(x) = h(Ea, T )/ |f (T )| = H(x). (11)

We note that a similar idea, but with a very different motivation, was used by MacDonald
[9].

The first DAE of this type that we consider is the double-exponential DAE [8–10],
which has often been invoked to explain the observed frequency dependence of the electrical
susceptibility or of the ionic conductivity,

h(Ea, T ) =
{
A exp[−a(E0− Ea)/kBT ] Ea 6 E0

A exp[−b(Ea − E0)/kBT ] Ea > E0
(12)

whereE0, a andb are constants that are independent ofT , andA = ab/[(a + b)kBT ] is
the normalizing constant. This distribution leads at high and low frequencies to the same
power-law dependence of the response on the frequency as the HN function [8], and the
temperature dependence ofh(Ea, T ) is required in order to obtain the time–temperature
superposition, i.e. that the form of frequency dependence is independent of temperature,
which is often found at least approximately [1, 2]. For this distribution,f (T ) = 1/(kBT ),
and so the parameterx given by equation (10) has the temperature-independent distribution

g(x) =
{
B exp(ax) x 6 0

B exp(−bx) x > 0
(13)
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whereB = ab/(a+b). However, it then follows that the relaxation time for a given particle
x is

τ(x, T ) = τ0 exp[E0/kBT ] exp(x). (14)

Thus, while the relaxation times were assumed, usually on physical grounds, to arise from
a DAE, they in fact are indistinguishable from a DRT with a single activation energyE0

and a DPFτ0 exp(x). This result, which we discuss in section 3, is of particular interest for
the analysis of measurements of thermally stimulated depolarization currents (TSDC).

The other typical DAE that we consider is a physically very plausible one for a
disordered system and one which has also been invoked to explain experimental results
for ionic conduction [9, 11], namely a Gaussian distribution of activation energies with
standard deviationσ :

h(Ea, T ) = [2πσ 2]−(1/2) exp[−(Ea − E0)
2/(2σ 2)]. (15)

Since there is noa priori reason whyσ should not be a function of temperature, we write
σ = σ(T ). This distribution is then of the form of equation (7), withf (T ) = 1/σ(T ), so
the states are identified by the parameter

x = (Ea − E0)/σ (T ) (16)

for which g(x) is just the normal distribution. In the simplest case of aσ(T ) that decreases
linearly with increasing temperature

σ(T ) = σ0− akBT (17)

one then readily finds that

τ(x, T ) = τ0 exp[E0/kBT ] exp([σ0x]/kBT ) exp(−ax). (18)

In this case, the pre-exponential factor of a particle with apparent activation energy
E0 + σ0x is just τ0 exp(−ax), which is just the well-known compensation law [14, 15,
17] or Meyer–Neldel rule [18]. Incidentally, MacDonald [9] found that the best fit of
his truncated Gaussian distribution to the experimental results of Birgeet al [19] for the
a.c. conductivity of the ionic conductor (KBr)0.5(KCN)0.5 involved a standard deviation that
decreases with temperature, although he did not attempt to fit it to the form of equation (17).

3. Discussion

We now turn to the physical significance of the above results, and consider first the meaning
of a temperature-dependent activation energy. Strictly speaking, if the activation energy
is defined by an Arrhenius law such as equation (6), then it is nonsense to speak of
a temperature-dependent activation energy, and this temperature dependence should be
absorbed in the pre-exponential factor, as in equations (14) and (18). However, the physical
motivation for an Arrhenius law is often the difference between the free energy of the
initial state and that of either the final state or of some intermediate state through which the
system must pass during the transition. The above energy barriers can certainly depend on
the temperature, and so if one uses temperature-dependent distributions one should really
use the term distributions of energy barriers rather than distributions of activation energies.
Since the latter term has become so accepted in the literature, we will continue to use it,
but with the above interpretation.

The second point that we consider is the possible physical justification for the existence
of a specific DAE. The physical motivation for the Gaussian distribution [9, 11] used in
equation (15) is simply that in any disordered system one expects to find a distribution
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of energy barriers, and according to the central-limit theorem (if it is applicable here) this
distribution should be Gaussian. However, at least for dielectric relaxation in insulators [9],
this Gaussian distribution does not usually fit the isothermal results as well as the double-
exponential DAE used in equation (12) does, since (as mentioned above) only this latter leads
to a form similar to the HN function, which is widely used to describe experimental results
in the frequency domain. A physical motivation for this temperature-dependent distribution
has been suggested by Wang and Bates [10], in terms of the thermal fluctuations that change
the activation energy for transitions of the individual particles. In this theory, the distribution
should be of quite general validity, and they in fact apply it to ionic solids in which the
ions are situated in double-well potentials.

The main question of interest is the possibility of observing experimentally a DAE,
and in particular a temperature-dependent one of the form of equation (7). The results of
isothermal experiments can always be represented formally in terms of a DRT, whether or
not the processes involved are in fact the relaxation in parallel of independent particles. Thus
the results of isothermal experiments at different temperatures can always be expressed in
terms of a temperature-dependent DRT, whatever the physical processes that are involved.
However, isothermal experiments provide no indication as to the temperature dependence
of the individual relaxation times, if these are assumed to have some physical significance.
Thus, the best hope of obtaining direct experimental evidence for a DAE is by means of
experiments that monitor the effects of changes of temperature on the individual elements
of the system, such as TSDC experiments. In fact, it has been claimed in the past [20,
21] that these experiments permit an unequivocal distinction to be made between systems
with a DAE and those having a fixed activation energy and a DPF. However, the above
results were based on the assumption of a temperature-independent DAE with a fixed pre-
exponential factor, which is often not compatible with the isothermal results for the dielectric
susceptibility at different temperatures. Our analysis shows that for the frequently observed
temperature-dependent double-exponential DAE of the form of equation (12), it is not
possible to conclude from experiments of the TSDC type whether the states in a system
have the above DAE and a fixed pre-exponential factor or a single activation energy and
a DPF that could arise, for instance, from a distribution of tunnelling distances or other
subsidiary processes. Similarly, in systems with a Gaussian distribution for the DAE, it is
not possible to determine by these methods whether the pre-exponential factor is fixed and
the standard deviation of the distribution is temperature dependent or whether the distribution
is fixed and the pre-exponential factor depends on the activation energy according to the
compensation rule. The reason for this is that, at least for relaxation experiments, for the
system as a whole (i.e. for an ensemble) the free-energy differences and pre-exponential
factors for transitions are not independent variables. While this result is trivial for isothermal
experiments, in which only the relaxation timesτ are important for the DRT and not which
term in equation (6) forτ is the variable, the main novel point of our analysis is to show
that this is also true for relaxation experiments at variable temperatures. However, it is just
possible that one could distinguish between these possibilities by experimental techniques
which involve energy differences rather than relaxation times, if these can be performed at
varying temperatures.

4. Conclusions

The main conclusion from our analysis is that, even when the system’s response is measured
under conditions of varying temperature, one often cannot distinguish experimentally
between different physical models that lead to a temperature-dependent distribution of
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relaxation times. In particular, one cannot distinguish between the double-exponential DAE
with a fixed pre-exponential factor that is often used to describe experimental results and
a distribution of these factors with a single constant activation energy. Of course, this
does not necessarily detract from the value of models involving DAEs for the correlation
of experimental results on different systems, for instance, but it indicates that the standard
types of experiment, such as TSDC, cannot be used to test the validity of different types of
model.
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